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Abstract:  

This project is an exploration of a large amount of 

New York City Subway data from the month of May 

2011. I will specifically focus on Lines 1, 2, and 3 – the 

north/south artery of west Manhattan. The goals of this 

project are two-fold. First, I will examine the arrival and 

departure patterns of the subways and make some 

observations about what time of day tends to have the 

greatest number of late arrivals, and the extent to which a 

train arriving late impacts the train behind it. Second, I 

will create a “moving map” to provide a visual for some of 

the trends I describe. 

 

Introduction:   

 The New York City subway is the seventh busiest 

metro system in the world, averaging over 5.5 million 

rides per weekday. A large portion of this passenger traffic 

occurs on Lines 1, 2, and 3 (shown in red on the map at 

right), one of the central transit arteries of Manhattan. 

Lines 2 and 3 are express trains, meaning that they only 

stop at white dots on the map, while Line 1 stops at all 

stations along its route.  

 Line 1 extends from the Bronx at 242nd St (off the 

top of the map) down to South Ferry at the southern tip of 

Manhattan. I will focus my investigation on the entirety of 

line 1 as well as the portions of line 2 and 3 which overlap 

line 1 (between 96
th

 St and Chambers St). 
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 Data Source: 

Given that subway schedules differ between weekends and weekdays, I chose to limit 

myself to an analysis of travel during the 22 weekdays in May 2011. The New York City subway 

data set is publicly available in 31 separate Comma-Separated-Value (CSV) files at 

http://www.mta.info/developers/download.html. I also utilized the codebook and a companion 

file with station information for all stations in the NYC subway system. 

Unfortunately, the raw data is not particularly clean and so I developed the following 

code to process the data from the web files into a usable form. This involved extracting the data 

from each of the 22 files in an efficient manner and then creating a new matrix that categorized 

the relevant information from the file (with respect to my project) into a ten column form. The 

first nine columns in matrix ‘mat’ are variations on the data in the original CSV file and the tenth 

column is a placeholder for an eventual indicator of whether a train is on time or late. I have 

included notations in the code to explain my data cleaning process: 

 

x <- NULL 
 
# Put all files in working directiory 
 
# Scrape Files with a single-digit date 
 

r <- c(2:6,9)  # weekdays 
 

basefile <- 'ATS-Data_2011-05-0X.csv' 
for (day in r) { 

     thisfile <- gsub("X", day, basefile) 
     cat("Scraping", thisfile, "\n") 
     z <- read.csv(thisfile, skip=1, header=FALSE, as.is=TRUE) 
     x <- rbind(x, z) 

} 
 
# Scrape Files with a double-digit date 
 

s <- c(10:13,16:20,23:27, 30:31)   # weekdays 
 

basefilee <- 'ATS-Data_2011-05-XX.csv' 
for (dayy in s) { 

     thisfile <- gsub("XX", dayy, basefilee) 
     cat("Scraping", thisfile, "\n") 
     z <- read.csv(thisfile, skip=1, header=FALSE, as.is=TRUE) 
     x <- rbind(x, z) 

} 
 
# Load in Companion File Detailing Station Information 
 

y <- read.csv('stops.txt', sep=",", as.is=TRUE, skip=1,header=FALSE) 
 
# Create a Matrix with Columns for: 

mat <- matrix(NA, nrow=nrow(x), ncol=10) 
colnames(mat) <- 
c("dayinmay","trainline","stopid","arr/dep","secondsaftermidnight","trainid","stoplo
ng","stoplat","uptown/downtown","late") 

   
#1: Date in May 
 
      mat1 <- unlist(substr(x[ ,1], 9,10)) 
  mat[ ,1] <- mat1 
 
#2: Line Number (1,2, or 3) 
 



3 
 

  mat[ ,2] <- x[ ,6] 
 
#3: Stop ID# 
 
  mat[ ,3] <- x[ ,7] 
  
#4: Arrival (1) or Departure (2) from a particular station 
 
     mat4 <- unlist(x[,5])  #   1 = 'Arr'   2 = 'Dep' 
  mat[ ,4] <- mat4 
 
#5: Seconds after Midnight that Arr or Dep occurs 
 
      x[ ,4] <- substr(x[ ,4], 12,19) 
      out1 <- as.numeric(unlist(substr(x[ ,4], 1,2))) 
      out2 <- as.numeric(unlist(substr(x[ ,4], 4,5))) 
      out3 <- as.numeric(unlist(substr(x[ ,4], 7,8))) 
      out4 <- 3600*out1+out2*60+out3 
  mat[ ,5] <- out4 
 
#6: Train Number 
 
      mat6 <- unlist(substr(x[ ,2], 4,8)) 
  mat[ ,6] <- mat6 
  mat[,6] <- gsub("+", "0", mat[,6], fixed=TRUE) 
       
#7: Stop Latitude 
 

index <-match(mat[ ,3],y[ ,1]) 
  mat[ ,7] <- y[index,5] 
 
#8: Stop Longitude 
 
  mat[ ,8] <- y[index,6] 
 
#9: Uptown or Downtown Train (uptown==0, Downtown==1) 
 
  mat[ ,9] <- x[ ,3] 
 
#10: Placeholder for OnTime/Late Color 
 
  mat[,10] <- 0 
 
################ modify initial matrix ################################################ 
 
# Limit scope to trains between 4am and 9pm 
 

mat <- mat[as.numeric(mat[ ,5]) > 14400 & as.numeric(mat[ ,5]) < 75600, ]   
 
# Limit scope to stops on Line 1 (or where Lines 2 & 3 overlap line 1) 
 

mat <- mat[as.numeric(mat[,3]) < 150,] 
 
# Specify for only arrivals at a Station 
 

mat <- mat[mat[,4]==1,] 
  
# Remove all Rows with NA’s  
 

toremove <- apply(is.na(mat),1,any) 
mat <- mat[!toremove,] 

 
# Establish object ‘mat’ as a matrix 
 

mat <- matrix(as.numeric(mat), nrow=nrow(mat)) 
 
 

 

 

 

I have included the first six rows of the matrix ‘mat’ on the following page so that the reader can 

have a better understanding of what is available in this data set: 
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day line stopid arr/dep secaftermidnight trainid stoplong   stoplat up/downtown color 

   2    2    125       1            14417    3110 40.76825 -73.98193           0     0 

   2    2    124       1            14497    3110 40.77344 -73.98221           0     0 

   2    2    123       1            14588    3110 40.77845 -73.98197           0     0 

   2    2    122       1            14678    3110 40.78393 -73.97992           0     0 

   2    2    121       1            14760    3110 40.78864 -73.97622           0     0 

   2    2    120       1            14846    3110 40.79392 -73.97232           0     0 
 

It is important to note that the location of the subway car (latitude and longitude) is 

known only for the second at which a train car arrives at a new station. In the appendix, I show 

the code required to “interpolate” the location of each train for each second of each day. Given 

that each of these cases receives a separate row, this “second-by-second” matrix is extremely 

large. However, instead of using the rbind() command which would become unwieldy, I chose to 

pre-define an extremely large matrix of the appropriate number of rows and columns and then 

use a loop to insert each train’s mini-matrix one after another into the structure. 

 

 
 

The upper left plot displays the distribution of all 3600 downtown express trains (lines 2 

& 3) to travel from 96
th

 Street to Chambers Street during the month of May 2011. The upper 

center plot is of the same distribution for downtown line 1 trains (notice the increase in roughly 

500 seconds to travel the same distance due to all the extra stops). The upper right plot is the 

distribution of all the downtown line 1 trains to travel from 242
nd

 Street (Bronx) to 96
th

 Street 

during the month of May. The bottom three plots are the analogous plots for uptown trains. The 
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scale along the x-axes is simply the train number during the month of May (pseudo-

chronological order) and the scale along the y-axes is time in seconds. 

 

 There are three interesting points to be made about the series of plots on the previous 

page. First, there is a tighter band of arrival times for the express trains than for the local trains. 

This is to be expected given that an express train has more start and stop times and therefore, 

more opportunities to fall off its schedule. Nevertheless, it is good that our common sense is 

reflected in the plots. Additionally, this lack of grossly tardy express trains will show up in our 

moving maps. 

 Secondly, this plot provides motivation for the next few plots. There appears to be 

‘streaking’ in the plots above – multiple trains in a row being late and showing up as a vertical 

band. One of my initial goals of this project was to learn the extent to which one train arriving 

late effects the following train. From a cursory graphical approach, it appears that these 

“bunching” effects might be relevant.  

 Finally, there is a vague zig-zagging pattern across a few of the plots on the previous 

page. Could this be a variation depending on the time of day? This is unclear given that there are 

22 days of data represented in the plots and there are not 22 “zig-zags.” Even so, this also 

appears to be an interesting question to look into. 

 

 From taking a look at the previous plots, I can tell that there is a clear band of typical 

arrival times for each stop or interval (I have chosen to call an ‘interval’ the amount of time in 

seconds between a train’s arrival at any stop and then its arrival at the following stop). The 

outliers can be determined and for each stop, I define a train that is above the 3
rd

 quartile as late. 

Given that the histogram of values has a disproportionately large tail (there are not a lot of trains 

that arrive early), the 3
rd

 quartile definition of ‘late’ actually makes quite a bit of sense both 

theoretically and empirically. This cutoff occurs for a different number of seconds for each 

interval given that stops are not evenly spaced up and down Manhattan. I have run a massive 

loop to gather the third quartile of the travel times between each stop in the uptown and 

downtown direction for both the express and local trains. I imputed those values into a new 

reference matrix named ‘doug’
1
. The code is shown on the following page: 

 

                                                           
1
 Doug is the name of the Author’s younger brother. 
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doug <- matrix(NA, nrow=4, ncol=42) 
downtown1 <- c(NA,NA,89 ,83 ,NA,105,80 ,91,91,94,122,102,118, 88,109,113,77 
,89,118,115,85,99, 97,91,110,118,122, 81,71,69,69,94,96,71,69,79,106,70,217,NA,NA,NA) 
uptown1 <-   c(NA,NA,214,113,NA,90 ,102,98,79,94,96 ,120,106,120,106,115,111,81,86 
,129,98,87,100,93,103,108,155,105,78,73,68,77,78,84,83,65, 83,66, 76,NA,NA,NA) 
downtown23 <- matrix(NA, nrow=1, ncol=42) 
    downtown23[1,20] <- 303 
    downtown23[1,23] <- 417 
    downtown23[1,27] <- 122 
    downtown23[1,28] <- 159 
    downtown23[1,32] <- 281 
uptown23   <- matrix(NA, nrow=1, ncol=42) 
  uptown23[1,23] <- 286 
  uptown23[1,27] <- 468 
  uptown23[1,28] <- 120 
  uptown23[1,32] <- 168 
  uptown23[1,37] <- 236 
doug[1,] <- downtown1 
doug[2,] <- uptown1 
doug[3,] <- downtown23 
doug[4,] <- uptown23 
 

 

 Notice that the top two rows of ‘doug’ are for line 1 and these rows have very few 

NA’s. The opposite is the case for the bottom two rows of ‘doug’ (lines 2 &3). This discrepancy 

is simply due to the number of stops included in the overlap between line 1 and lines 2 & 3. 

Express trains only stop 5 times on the line 1 route and thus the rest of the values in the last two 

rows of ‘doug’ are NA’s. I should mention that the NA’s in the top two rows are simply due to 

skipped numbers in the stop identification numbering system. 

 

 I then compared the time interval for each case to the 3
rd

 quartile value. If it was greater 

(i.e. the train took more time to travel the distance), the tenth (placeholder) column in ‘mat’ 

received a “1” to indicate late arrival between those two stops. I chose to define a train as late 

only if it was late in that particular one-stop interval. Otherwise, I found that all the subways 

could be considered late because once they get off schedule, it is very unusual for them to make 

up time on the rails. 

 On the following page, I display a graph which splices the data set into 17 smaller sets 

– each bar corresponds to all the one-stop trips that occurred during an hour range (for example 

7am-8am) for the entire month of May: 
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 This plot shows that there is a sharp increase in percentage of trains that arrive late 

beginning during rush hour and then the subway system continues to have a consistent 

percentage of trains running late throughout the day. This indicates that either the trains have a 

difficult time getting back on schedule once they are set off or evening rush hour is statistically 

insignificant in terms of delaying new trains.  

 Below, it is clear that there is not a trend based on day of the week; all of the days have 

a similar percentage of late trains: 
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 Finally, there does not appear to be a trend related to a station or set of stations. I 

believe that the slight decrease from left to right along the graph is simply buoyed by an influx of 

express trains entering the line at 96
th

 St. (see graph below). Even if the line was symmetric, the 

trend is too small to get excited about.   

 
Next, I will focus on the question of “bunching” and the extent to which the late arrival of 

one train will impact the train behind it. Consider a hypothetical scenario with two subways 

running along the same tracks. Given that the first train is late, there are two possible cases for 

the arrival of the second train: either it is late or it is on time. In a world of “zero bunching” and 

no delays due to train traffic, we would expect a late arrival of the first train to have no effect on 

the second train. However, the real world dictates otherwise. The plots on the following page 

show that the uptown and downtown trains that directly follow a late train (red and green, 

respectively) are significantly more likely to be late than the uptown and downtown trains which 

follow an on-time train (orange and blue, respectively). I have split up the express trains and the 

local trains because they run on different sets of tracks and therefore could reasonably be 

expected to run independently of each other. 
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Red: Uptown directly following a 

late train 

Green: Downtown directly 

following a late train 

Orange: Uptown directly following 

an on-time time 

Blue:  Downtown directly 

following an on-time time 

Note: Local (line1) and Express 

(lines 2 & 3) trains run on different 

sets of tracks. The percent 

difference between red/green and 

orange/blue is significantly greater 

for Express Trains than for Local 

Trains. However, the percent 

chance that a local train is late is 

significantly greater than the 

percent chance that an express 

train will be late. 



10 
 

 Finally, I will simply present a visual “moving map” of the bunching of trains. The 

detailed code is included in full in the Appendix. The plot is designed to shuffle through the 

positions of active trains at a specified range of time. The times can be specified in the fourth 

line below. Keep in mind that t is a multiple of 5 so t= 9510 corresponds to roughly 5:06 PM: 

(9510*5+14000)%%3600. 

 
b=1:max 
 
plot(mat[b,8], mat[b,7], pch="_", main="NYC Subway Lines 1,2,3", xlab='Latitude',      
ylab='Longitude') 
 
for (t in 9500:9550) { 
  points(latone[,t]+0.002, longone[,t], col=colorone[,t], pch=16) 
  points(lattwo[,t]-0.002, longtwo[,t], col=colortwo[,t], pch=16) 
  Sys.sleep(0.03) 
  points(latone[,t]+0.002, longone[,t], col='white', pch=16) 
  points(lattwo[,t]-0.002, longtwo[,t], col='white', pch=16) 
}

 
 The figure above is a screen shot of the moving map at t=9510, or 5:06pm. The express 

trains are shown as dots on the left side of the central spine and the local trains are shown on the 

right side. It is easy to see that the two lines are independent; while line 1 has bunching of late 

arrivals between Times Square and 14
th

 St., lines 2 and 3 experience nothing of the sort. 
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Brief Conclusions: 

 

 The Express trains and Local trains are quite different in terms of their late arrival 

patterns. While a Local train is more likely to be late than an Express train, a previous Express 

train being late has a greater impact on the next express train than the analogous situation for 

Local trains. Additionally, Express trains have a narrower band of arrival times than Local trains 

due to their lack of frequent stops. 

 Day of the week and specific stop didn’t seem to have much of an effect on the 

probability of late arrival, but the chance of being on a late train does go up as the day 

progresses. In particular, the morning rush hour is taxing on lines 1, 2, and 3; in a span of 2 

hours, the percent chance of being on a late train nearly triples.  

 From looking at the moving maps and raw data, it appears that Express and Local trains 

truly are independent. In the future, the “moving map” tool that I developed could be expanded 

to model other sections of the NYC subway system and capture degree of lateness with a palette 

of colors instead of just red and green. With so many New Yorkers depending on lines 1, 2, and 

3 in Manhattan, I believe that a closer look at the real-time data is warranted. Perhaps a more 

detailed analysis of these and other subway lines would be able to help us better optimize New 

Yorkers’ travel plans. 
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Appendix: R Code for the Moving Map on Page 10 
 
 
 
############### process data into initial matrix ################################ 
 
x <- read.csv('ATS-Data_2011-05-03.csv', 
                sep=",", as.is=TRUE, skip=1,header=FALSE) 
y <- read.csv('stops.txt', 
              sep=",", as.is=TRUE, skip=1,header=FALSE) 
 
mat <- matrix(NA, nrow=nrow(x), ncol=10) 
colnames(mat) <-
c("dayinmay","trainline","stopid","arr/dep","secondsaftermidnight","trainid","stoplong
","stoplat","uptown/downtown", "color") 
       
      mat1 <- unlist(substr(x[ ,1], 9,10)) 
  mat[ ,1] <- mat1 
  mat[ ,2] <- x[ ,6] 
  mat[ ,3] <- x[ ,7] 
      mat4 <- unlist(x[,5])  #   1 = 'Arr'   2 = 'Dep' 
  mat[ ,4] <- mat4 
      x[ ,4] <- substr(x[ ,4], 12,19) 
      out1 <- as.numeric(unlist(substr(x[ ,4], 1,2))) 
      out2 <- as.numeric(unlist(substr(x[ ,4], 4,5))) 
      out3 <- as.numeric(unlist(substr(x[ ,4], 7,8))) 
      out4 <- 3600*out1+out2*60+out3 
  mat[ ,5] <- out4 
      mat6 <- unlist(substr(x[ ,2], 4,8)) 
  mat[ ,6] <- mat6 
  mat[,6] <- gsub("+", "0", mat[,6], fixed=TRUE) 
      index <-match(mat[ ,3],y[ ,1]) 
  mat[ ,7] <- y[index,5] 
  mat[ ,8] <- y[index,6] 
  mat[ ,9] <- x[ ,3] 
  mat[,10] <- 0 
 
 
################ modify initial matrix 
################################################ 
 
mat <- mat[as.numeric(mat[ ,5]) > 14400 & as.numeric(mat[ ,5]) < 75600, ]    
mat <- mat[as.numeric(mat[,3]) < 150,] 
mat <- mat[mat[,4]==1,] 
toremove <- apply(is.na(mat),1,any) 
mat <- mat[!toremove,] 
mat <- matrix(as.numeric(mat), nrow=nrow(mat)) 
max <- as.numeric(nrow(mat)-1) 
 
################### determine the number of rows in second-by-second matrix 
##################### 
 
vn <- 1 
for (b in 1:max) { 
  if (mat[b,6]==mat[b+1,6] &  mat[b,2]==mat[b+1,2] & mat[b,9]==mat[b+1,9] & 
(abs(as.numeric(mat[b,3]) - as.numeric(mat[b+1,3])) < 6) ) { 
    v <- as.numeric(mat[b+1,5]) - as.numeric(mat[b,5]) 
#  if (v>300) cat("Row", b, "time interval", v, "\n") 
  } else {      
    v <- 1 
  }  
  vn <- vn + v 
} 
 
 
###### Color Mat[,10]  ########################## 
doug <- matrix(NA, nrow=4, ncol=42) 
downtown1 <- c(NA,NA,89 ,83 ,NA,105,80 ,91,91,94,122,102,118, 88,109,113,77 
,89,118,115,85,99, 97,91,110,118,122, 81,71,69,69,94,96,71,69,79,106,70,217,NA,NA,NA) 
uptown1 <-   c(NA,NA,214,113,NA,90 ,102,98,79,94,96 ,120,106,120,106,115,111,81,86 
,129,98,87,100,93,103,108,155,105,78,73,68,77,78,84,83,65, 83,66, 76,NA,NA,NA) 
downtown23 <- matrix(NA, nrow=1, ncol=42) 
    downtown23[1,20] <- 303 
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    downtown23[1,23] <- 417 
    downtown23[1,27] <- 122 
    downtown23[1,28] <- 159 
    downtown23[1,32] <- 281 
uptown23   <- matrix(NA, nrow=1, ncol=42) 
  uptown23[1,23] <- 286 
  uptown23[1,27] <- 468 
  uptown23[1,28] <- 120 
  uptown23[1,32] <- 168 
  uptown23[1,37] <- 236 
doug[1,] <- downtown1 
doug[2,] <- uptown1 
doug[3,] <- downtown23 
doug[4,] <- uptown23 
 
 
for (b in 1:max){     
  if (mat[b,2]==1 & mat[b,9]==1 & mat[b,3]!=101 & mat[b,3]!=103 & mat[b,3]!=104 & 
mat[b,3]!=139 & mat[b,3]!=142 & ((as.numeric(mat[b+1,5])-as.numeric(mat[b,5])) > 
doug[1,(as.numeric(mat[b,3])-100)])) { 
    mat[b,10] <- 1 
  } 
  else if (mat[b,2]==1 & mat[b,9]==0 & mat[b,3]!=101 & mat[b,3]!=103 & mat[b,3]!=104  
& mat[b,3]!=106 & mat[b,3]!=142 & ((as.numeric(mat[b+1,5])-as.numeric(mat[b,5])) > 
doug[2,(as.numeric(mat[b,3])-100)])) { 
    mat[b,10] <- 1 
  } 
} 
 
 
 e <- mat[mat[,2]!=1,] 
 
k <- 1 
r <- NULL 
for (b in 3:2993) { 
  if ( (abs((e[b,3]) - (e[b+1,3])) == 1) & (abs((e[b,3]) - (e[b-1,3])) == 1) ) { 
    r[k] <- (e[b,6]) 
    k <- k+1 
  } 
} 
r <- unique(r) 
p <- NULL 
  k <- 1 
  for (b in 1:2993){ 
    for (i in r){ 
      if (e[b,6]==i) {p[k] <- b 
                        k <- k+1} 
    } 
  } 
 
e <- e[-p,]  
 
for (b in 1:2733) { 
  if (e[b,2]==e[b+1,2] & e[b,6]==e[b+1,6] & e[b,9]==1 & e[b+1,9]==1 & (abs(e[b,3]-
e[b+1,3]) < 6) & ((as.numeric(e[b+1,5])-as.numeric(e[b,5])) > 
doug[3,(as.numeric(e[b,3])-100)])) { 
    e[b,10] <- 1 
  } 
  else if (e[b,2]==e[b+1,2] & e[b,6]==e[b+1,6] & e[b,9]==0 & e[b+1,9]==0 & 
(abs(e[b,3]-e[b+1,3]) < 6) & ((as.numeric(e[b+1,5])-as.numeric(e[b,5])) > 
doug[4,(as.numeric(e[b,3])-100)])) { 
    e[b,10] <- 1 
  } 
} 
 
mat <- rbind(e, mat) 
################## create second-by-second matrix 
######################################### 
 
sbs <- matrix(NA, nrow=2101168, ncol=7) 
vn <- 1 
for (b in 1:18965) { 
  if (mat[b,6]==mat[b+1,6] & mat[b,2]==mat[b+1,2] & mat[b,9]==mat[b+1,9] & 
abs(as.numeric(mat[b,3]) - as.numeric(mat[b+1,3])) < 6 ) { 
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    v <- as.numeric(mat[b+1,5]) - as.numeric(mat[b,5]) 
    foo <- matrix(as.numeric(unlist(mat[b,5:10])), nrow=v, ncol=6, byrow=TRUE) 
    foo[,1] <- as.numeric(mat[b,5]) + 0:(v-1)   # Time column all at once. 
    foo[v,3:4] <- as.numeric(unlist(mat[b+1,7:8])) # Get ending position 
    foo[2:(v-1),3] <- foo[1,3] + (1:(v-2))/(v-1) * (foo[v,3]-foo[1,3]) # Interpolate 
longitude 
    foo[2:(v-1),4] <- foo[1,4] + (1:(v-2))/(v-1) * (foo[v,4]-foo[1,4]) # Interpolate 
latitude 
    sbs[vn:(vn+v-1),1:6] <- foo[1:v,] 
    sbs[vn:(vn+v-1),7]<- mat[b,2] 
  } else { 
    v <- 1 
    foo <- matrix(as.numeric(unlist(mat[b,5:10])), nrow=v, ncol=6, byrow=TRUE)  
    sbs[vn,1:6] <- foo[1,] 
    sbs[vn,7]<- mat[b,2] 
  }  
  vn <- vn + v 
} 
 
 
################## print 'new' matrix (trims down sbs to multiples of 5 seconds) 
############################## 
 
j<- 1 
k <-1 
one <- matrix(NA, nrow=241128, ncol=7) 
two <- matrix(NA, nrow=179156, ncol=7) 
for (i in 1:2101168){ 
  if ((sbs[i,1]%%5)==0) { 
    if (sbs[i,7]==1) { 
      one[j,] <- sbs[i,] 
      j <- j+1 
    }else { 
      two[k,] <- sbs[i,] 
      k <- k+1  
    } 
  } 
} 
 
 
################## CREATE long, lat, color matrices ############################### 
 
 
longone <- matrix(NA, nrow=369, ncol=13000) 
latone <- matrix(NA, nrow=369, ncol=13000) 
colorone <- matrix(NA, nrow=369, ncol=13000) 
longtwo <- matrix(NA, nrow=876, ncol=13000) 
lattwo <- matrix(NA, nrow=876, ncol=13000) 
colortwo <- matrix(NA, nrow=876, ncol=13000) 
 
g <- 0 
i <- 1 
n<- 1 
for (n in 1:241127){ 
  if (one[n,2]==one[n+1,2]){ 
    j <- (one[n,1]-14000)/5 
    longone[i,j] <- one[n,3] 
    latone[i,j] <- one[n,4] 
      if (one[n,6]==1) {colorone[i,j] <- "red"} 
      else if (one[n,6]==0) {colorone[i,j] <- "green"} 
  } else {i <- i+1} 
 
} 
 
i <- 1 
n<- 1 
for (n in 1:179155){ 
  if (two[n,2]==two[n+1,2]){ 
    j <- (two[n,1]-14000)/5 
    longtwo[i,j] <- two[n,3] 
    lattwo[i,j] <- two[n,4] 
    if (two[n,6]==0) {colortwo[i,j] <- "green"} 
    else  {colortwo[i,j] <- "red"}  
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    } else {i <- i+1} 
 
} 
 
################ MOVING MAP ####################### 
 
b=1:max 
 
plot(mat[b,8], mat[b,7], pch="_", main="NYC Subway Lines 1,2,3", xlab='Latitude', 
ylab='Longitude') 
text(-73.913, 40.89,cex=0.5, paste ("Van Cortlandt Park - 242 St"), col='black') 
text(-73.95, 40.85,cex=0.5, paste ("168 St - Washington Hts"), col='black') 
text(-73.915, 40.885,cex=0.5, paste ("238 St"), col='black') 
text(-73.995, 40.767,cex=0.5, paste ("Times Sq - 42 St"), col='black') 
text(-74.00, 40.70,cex=0.5, paste ("South Ferry"), col='black') 
text(-73.96, 40.84,cex=0.5, paste ("157 St"), col='black') 
text(-73.92, 40.88,cex=0.5, paste ("231 St"), col='black') 
text(-73.93, 40.875,cex=0.5, paste ("215 St"), col='black') 
text(-73.935, 40.87,cex=0.5, paste ("207 St"), col='black') 
text(-73.97, 40.82,cex=0.5, paste ("116 St - Columbia University"), col='black') 
text(-73.995, 40.71,cex=0.5, paste ("Rector St"), col='black') 
text(-73.96, 40.84,cex=0.5, paste ("157 St"), col='black') 
text(-73.98, 40.805,cex=0.5, paste ("96 St"), col='black') 
text(-74.00, 40.705,cex=0.5, paste ("South Ferry Loop"), col='black') 
text(-73.99, 40.715,cex=0.5, paste ("Chambers St"), col='black') 
text(-73.99, 40.79,cex=0.5, paste ("72 St"), col='black') 
text(-73.985, 40.74,cex=0.5, paste ("14 St"), col='black') 
text(-73.99, 40.728,cex=0.5, paste ("Houston St"), col='black') 
 
t <- 9510 
for (t in 9500:9550) { 
  points(latone[,t]+0.002, longone[,t], col=colorone[,t], pch=16) 
  points(lattwo[,t]-0.002, longtwo[,t], col=colortwo[,t], pch=16) 
  Sys.sleep(0.03) 
  points(latone[,t]+0.002, longone[,t], col='white', pch=16) 
  points(lattwo[,t]-0.002, longtwo[,t], col='white', pch=16) 
} 
 

 


