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ABSTRACT 

Solar photovoltaic (PV) power production can be volatile, 

which introduces a number of problems to managing the 

electric grid. To effectively manage the increasing levels of 

solar penetration, the variability of distributed solar power 

production needs to be understood. PV ramp rates (i.e. 

changes in power production) have been studied previously 

in virtual simulations, laboratories, and limited field studies, 

but no large scale studies have been conducted in the field. 

This paper presents a large scale field study of solar power 

production variability around Los Angeles and Newark for 

2012 using 5-minute interval power data from PV systems 

monitored in the field. 

Two new metrics, Solar Volatility and Solar Deviation, are 

introduced to quantify the variability of PV output 

compared with expected output. These metrics are applied 

to the time series power data from over 1000 systems each 

around Los Angeles and Newark. The study concludes that 

aggregated system Solar Volatility decreases most with 

increasing number of systems, and is less sensitive to the 

geographic dispersion of systems. Solar Deviation decreases 

slightly with increased number of systems and geographic 

dispersion, but is less sensitive to these factors than Solar 

Volatility. 

1 INTRODUCTION 

In recent years, there has been significant growth in the 

installed capacity of solar photovoltaic (PV) systems 

throughout the world. While it is currently a small part of 

the overall power generation mix, there are areas of high 

penetration in which solar PV output supplies a significant 

amount of power. 

PV power output can be variable, meaning that the power 

changes given the amount of sunlight striking the panels; as 

clouds move and block the sun, power output reacts 

accordingly. Because the electric grid needs to maintain 

power output to meet demand at any instant, this variable 

output impacts the stability of the grid, particularly in areas 

of high penetration. 

Understanding and quantifying volatility is important to 

maintaining grid stability. Grid operators typically maintain 

a mix of reserve generation resources, such as regulating, 

following, contingency and ramping reserves (Ela, 2011). 

These reserves are dispatched based on time-frame, 

capacity, and cost. In the case of solar PV output falling, 

these reserves are activated to make up the difference and 

maintain constant power output for the system. By 

improving the information available to quantify the change 

in PV output, the proper reserves can be on hand to ensure a 

stable grid and optimum cost efficiency. 

There have been a few previous studies regarding 

quantifying variability for distributed PV. These past studies 

have investigated the correlation of rates of changes 

between systems, using irradiance as a proxy for power 

output. In addition, these studies have investigated the 

variability of PV output compared with no PV output. 
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Perez et al investigated the variability of irradiance at small 

time scales using a virtual network of satellite-modeled 

irradiance and cloud-motion analysis. The study concluded 

that fluctuations become uncorrelated as time-period and 

distance increase. For example, 20-second fluctuations are 

uncorrelated at 500 meters, 1-minute fluctuations are 

uncorrelated at 1 km, and so forth in a linear relationship 

(Perez, 2011). 

In another paper, Hoff and Perez investigated the variability 

of dispersed PV compared with centralized PV. This 

analysis used a virtual network of modeled irradiance data 

as a proxy for PV power output. The main result of this 

analysis was that optimally dispersed PV will most 

significantly reduce variability (Hoff, 2010). 

This study differs from past research in order to better 

quantify variability. Rather than using virtual models or 

irradiance as a proxy, this investigation uses measured PV 

power data from over 2,000 distributed PV systems in the 

field. At 5-minute intervals, the time period for analysis is 

relatively short. Different geographies are studied in order to 

validate repeatability of results independent of local climate 

conditions. Lastly, rather than comparing against no output 

to determine variability, this paper quantifies variability by 

comparing output against expected output on a typical day. 

2 SOLAR VOLATILITY 

Volatility is a way to quantify variability in everything from 

stock market prices to rainfall to solar PV power outputs. 

The lower bound for volatility metrics has typically been 

zero, meaning no variation. Volatility is often reduced when 

considered in aggregate, as distinct sources of volatility are 

often imperfectly correlated. 

The application of volatility reduction for solar PV is 

illustrated in Fig. 1. As a cloud moves across an individual 

PV system, it blocks some of the sun’s rays and lowers 

power output. Individual solar PV systems – collections of 

strings of solar panels that span a small geographic region – 

are volatile because they are subject to point changes in 

cloud formations. Spreading the panels across a wider 

geographic region to form a distributed PV system, as 

shown at the bottom of Fig. 1, diversifies away much of this 

regional volatility. 

 

Fig. 1: Comparison of volatility for an individual PV system 

and a distributed PV system. 

Fig. 2 illustrates the reduction in volatility using measured 

power data from PV systems. As the figure shows, the 

output from an individual PV system can be highly volatile, 

while the aggregate of many PV systems (bottom red line) is 

closer to expectations (bottom black line). 

 

Fig. 2: One PV system (top) and a distributed PV system 

with 100 individual systems (bottom) for March 18th, 2012. 

2.1 Past work 

Hoff and Perez previously quantified volatility by using the 

equation below to compute a standard deviation of the 

changes in generated power values, or ramp rates, between 

neighboring time points (Hoff, 2010): 

(1)    
 

      

  {  ∑      

 

   

} 
 

While this standard volatility metric is useful in 

understanding ramp rates, it has some shortcomings. First, 
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this metric can mistakenly identify expected PV output as 

volatile. As seen in Fig. 3, solar PV output naturally ramps 

up and down over the course of a day. Equation 1 would 

quantify this example day as volatile, even though the 

power output is changing as expected (see TABLE 1). 

Second, Equation 1 often fails to identify days with volatile 

production. Because of the nature of the changes in the 

example day shown in Fig. 4, this would be classified as a 

low volatility day, even though the power output is different 

from the expected production curve (see Table 1). 

 

Fig. 3: Power output from aggregated PV systems on a clear 

day. 

 

Fig. 4: Power output from aggregated PV systems on a 

cloudy day. 

This paper builds upon the standard volatility metric and 

develops two new metrics to more robustly quantify and 

differentiate the volatility in a distributed PV. The two new 

metrics measure the amount of power generated and the 

ramp rates relative to corresponding expected production.  

This paper uses expected production, rather than no 

production, as a baseline because this scenario more 

accurately reflects a grid operations scenario. Utilities have 

forecasts of production and demand, which they use to plan 

their near-term generation mix. Active management is 

needed when PV output differs from the forecast 

expectations in order to balance production with demand. 

2.2 Solar Volatility Metric 

This paper defines “Solar Volatility” for a distributed solar 

PV system as the standard deviation of the (aggregated) 

differences between the observed ramp rates on a given day 

– the rates of change in power output – and the expected 

ramp rate curve for the month. The monthly expected ramp 

rate curve –        – is composed of the ramp rates at each 

five-minute interval for the average day in that month. The 

expected ramp rate curve can be interpreted as a typical day 

for each month. 

(2)      
 

      

  {  ∑            

 

   

} 
 

As Equation 2 shows, the solar volatility metric proposed 

here does not quantify the absolute volatility of ramp rates, 

but rather the relative volatility of ramp rates compared with 

expected ramp rates. 

Applying Equation 2 to the example PV output curves 

shown in Fig. 3 and Fig. 4 results in more intuitive 

quantifications of each. Fig. 3 is appropriately classified as a 

low volatility day, while Fig. 4 has higher volatility (see 

Table 1). 

2.3 Solar Deviation Metric 

This paper defines “Solar Deviation” for a distributed solar 

PV system as the standard deviation of the (aggregated) 

differences between the observed amounts of power 

generated by the system at five minute intervals throughout 

a given day and the expected amounts of power generated 

by the system. As with the Solar Volatility metric, the 

expected curve is constructed using an aggregate of the days 

in the month of analysis, and can be considered a typical 

day for each month. 

(3)      
 

      

  {  ∑          

 

   

} 
 

Solar Deviation is not necessarily correlated with Solar 

Volatility, and there are many days throughout the year for 

which Solar Volatility and Solar Deviation differ 

significantly. There are two scenarios which cause this 

differentiation. 
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The first is when the amount of cloud cover gradually 

changes throughout the day, leading to a relatively high 

Solar Deviation and a low Solar Volatility, illustrated in Fig. 

5. The gradual difference between measured and expected 

ramp rates causes low Solar Volatility, while the measured 

curve is clearly lower than the expected curve, causing 

higher Solar Deviation. 

 

Fig. 5: Example day with low Solar Volatility and high 

Solar Deviation. 

The second cause of difference between Solar Volatility and 

Solar Deviation is consistent, minor fluctuations of power 

output that closely follows the expected curve. Days that fall 

into this category have a low Solar Deviation and a 

relatively higher Solar Volatility, as shown in Fig. 6. In this 

example minor oscillations caused a difference in ramp 

rates, leading to moderate Solar Volatility, but only slight 

deviations from the expected normalized power curve, 

causing low Solar Deviation. 

 

Fig. 6: Example day with low Solar Deviation and relatively 

higher Solar Volatility. 

2.4 Comparison of Metrics 

The three metrics described in this section all quantify 

volatility in different ways. The calculations for Fig. 3, Fig. 

4, Fig. 5, and Fig. 6 are shown in the table below.  

TABLE 1: Comparison of metrics. The lowest values and 

highest values are given to put the other values within 

context. Note that values are scaled to 10
-2

. 

Example Hoff-Perez 

Volatility 

(× 10
-2

) 

Solar 

Volatility 

(× 10
-2

) 

Solar 

Deviation 

(× 10
-2

) 

Observed Min 

2012 

1.15 0.21 1.43 

Observed Max 

2012 

2.94 2.72 23.02 

Fig. 3 1.79 0.42 5.18 

Fig. 4 1.16 1.03 16.70 

Fig. 5 1.45 0.70 11.91 

Fig. 6 1.91 1.53 4.44 

3 FLEET ANALYSIS 

In a grid operations scenario, utilities are most interested in 

power output of PV systems in areas of high penetration. To 

address this scenario, power output was collected every five 

minutes for an entire year (January 2012 - December 2012) 

from 1,644 individual solar PV systems within a 100 km 

radius of Los Angeles, California, as well as from 1,140 

individual systems within a 100 km radius of Newark, New 

Jersey. Los Angeles and Newark were chosen to represent 

two different regions of the country with dissimilar climates 

and weather patterns, as well as high densities of distributed 

PV installations. A map of systems around Los Angeles is 
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shown in Fig. 7, and a map of systems around Newark is 

shown in Fig. 8. 

 

Fig. 7: PV systems within 100 km of Los Angeles, CA. 

 

Fig. 8: PV systems within 100 km of Newark, NJ. 

The Solar Volatility and Solar Deviation metrics introduced 

in sections 2.2 and 2.3 were systematically applied in order 

to quantify the impact of varying the following parameters 

of a distributed PV system: 

 the number of individual PV systems that compose 

the distributed system 

 the geographic radius across which these systems 

are spread out 

 the geography where the data was collected 

The effects of each parameter were determined by holding 

the other parameters constant. For example, the effect of 

number of systems was determined by holding distance 

between systems constant, and vice versa.  

3.1 Solar Volatility 

3.1.1 Number of Systems 

Fig. 9 shows the effect of number of systems on volatility 

for a given power aggregate. Each gray dot represents one 

day of quantified Solar Volatility of aggregated systems 

within 100 km of Los Angeles. The downward shift of the 

dots (from left to right) is indicative of the general decrease 

in solar volatility as the number of systems that compose the 

aggregated PV systems increases. The colored lines 

underscore this point by showing the drop in the median 

volatility (50
th

 percentile) as well as a drop in the maximum 

volatility (100
th

 percentile). It is worth noting that the 

decrease in Solar Volatility is most evident in the upper 

quartile –the 92 out of 366 – most volatile days of 2012, 

shown between the green and blue lines. This range narrows 

considerably as the number of individual systems is 

increased. In fact, the Solar Volatilities for all 366 days for 

the 80-system distributed solar PV scenario fall below the 

50
th

 percentile for the 2-system distributed solar PV 

scenario. 

 

Fig. 9: 366 days of fleet Solar Volatility for distributed 

systems as a function of the number of systems; Los 

Angeles. 

We can interpret the magnitude of Solar Volatility (VOL) 

for a given day by using the fact that it was computed as the 

standard deviation of a normally distributed set of power 

differences throughout the day: there is a roughly 95 percent 
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chance that the change in power generated by the distributed 

PV system at the next data reading (five minutes later, for 

example) will result in a deviation of less than ±[2*VOL] 

percent from the expected ramp rate. 

This has important implications for utilities. By 

understanding the difference from expected ramp rate, grid 

operators can maintain cost efficient reserves on hand to 

ensure grid reliability within the desired certainty levels. 

3.1.2 Distance 

The effect of distance was examined by keeping the number 

of systems analyzed constant and increasing the radial 

distance from the center of Los Angeles. As illustrated by 

Fig. 10, Solar Volatility shows a small decrease as distance 

increases. On this scale, Solar Volatility is less sensitive to 

distance than it is to number of systems. 

 

Fig. 10: 366 days of fleet Solar Volatility for 10 distributed 

systems as a function of distance; Los Angeles. 

3.1.3 Geography 

Furthermore, this reduction in volatility is not limited to the 

sunny confines of Los Angeles. Fig. 11 shows an analysis of 

Solar Volatility as a function of number of systems for 

Newark. Although the reader will notice the distribution of 

daily Solar Volatility is slightly greater (shifted upwards), 

the general shape of the reduction in volatility is nearly 

identical between the two cities. Fig. 12 illustrates that the 

Newark region shows a similar lack of decrease due to 

increasing distance as was found in LA.

 

Fig. 11: 366 days of fleet Solar Volatility for distributed 

systems as a function of the number of systems; Newark. 

 

Fig. 12: 366 days of fleet Solar Volatility for 10 distributed 

systems as a function of distance; Newark. 

3.2 Solar Deviation 

3.2.1 Number of Systems 

Fig. 13 shows the magnitude of Solar Deviation for all days 

in 2012 with respect to the number of individual PV systems 

in the distributed system, illustrating that Solar Deviation 

can only be reduced for about 75% of the days throughout 

the year. Additionally, the days with the greatest Solar 

Deviation do not see similar reductions by increasing the 

number of systems. 

This matches intuition – while it is possible to smooth the 

rate of change in output (Solar Volatility) by spreading the 
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impact of weather changes across more point sources, it is 

more difficult to compensate for days in which there is less 

sunlight than expected in a given region (Solar Deviation). 

 

Fig. 13: 366 days of fleet Solar Deviation for distributed 

systems as a function of the number of systems; Los 

Angeles. 

3.2.2 Distance 

Fig. 14 shows that an increase in radial distance for the 

distributed system results in slight Solar Deviation 

reductions for 75% of the days throughout the year and has 

a negligible effect on the 25% of days throughout the year 

with the greatest Solar Deviation. 

 

Fig. 14: 366 days of fleet Solar Deviation for 10 distributed 

systems as a function of distance; Los Angeles. 

3.2.3 Geography 

The general trends seen with Solar Deviation in Los 

Angeles are also applicable to the geography of Newark. 

Fig. 15 shows a small decrease in Solar Deviation as 

number systems increase, with slightly higher magnitudes 

than those experienced in Los Angeles. Shown in Fig. 16, 

deviation slightly decreases for 75% of the systems in 

Newark, but less so than for the same analysis in Los 

Angeles. 

 

Fig. 15: 366 days of fleet Solar Deviation for distributed 

systems as a function of the number of systems; Newark. 

 

Fig. 16: 366 days of fleet Solar Deviation for 10 distributed 

systems as a function of distance; Newark. 

4 CONCLUSION 

The metrics introduced in this paper provide useful new 

tools in quantifying the variability of distributed PV. Solar 

Volatility calculates the difference between the actual and 

expected ramp rates, while Solar Deviation measures the 

difference between the actual and expected power output. 

Both metrics make comparisons against expectations 
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because this reflects the forecasts that utilities use for grid 

operation planning. 

Solar Volatility decreases significantly as the number of 

systems aggregated increases. However, Solar Volatility 

does not decrease as much with increases in geographic 

dispersion. Limited evidence shows that the general trends 

are independent of geography, although local conditions do 

affect magnitude of the trends. 

Solar Deviation can be slightly decreased by adding more 

systems or increasing geographic dispersion. The trends of 

changes to Solar Deviation with respect to number of 

systems and geographic dispersion appear to be independent 

of geography, although further investigation is needed to 

obtain a statistically significant sample size. 

4.1 Recommendations 

By quantifying volatility with the methodology introduced 

in section 2.2, grid planners will know with certainty how 

much PV output could vary compared to expectations. This 

knowledge should be used to determine the amount and type 

of reserves in order to maximize cost efficiency and grid 

stability. 

When planning for added distributed solar capacity, utilities 

should take into account the number of systems in a specific 

region. Many small distributed systems, rather than a few 

larger PV systems, will reduce volatility to ensure that 

power output is more predictable. The findings presented 

here show that geographic dispersion beyond 10 km has 

little effect on reducing volatility, and should not be a major 

factor when adding distributed PV to the grid at distances 

greater than 10 km. It remains to be investigated the effect 

of geographic dispersions at less than 10 km. 

Solar Deviation should be used to measure the reserve 

margin needed. Utilities should note that Solar Deviation 

will not be significantly reduced in a distributed scenario, 

and should be prepared to handle the worst case scenario 

with the appropriate level of reserve capacity. 

4.2 Future Work 

This study took PV output for a typical day as expected 

output in order to facilitate analysis. However, this 

expectation can be improved upon by using forecasted PV 

output instead. 

Power is an instantaneous quantity, and as such grid 

operators need to maintain grid stability at very short time 

intervals. Conducting a fleet analysis using more time 

granular data, such as 1-minute or 1-second, would provide 

more applicable validation for grid operators. 

As mentioned in the recommendations section, further 

investigation of more dense, smaller regions of distributed 

PV is needed to test the conclusions regarding insensitivity 

of Solar Volatility and Solar Deviation to geographic 

dispersion. 

Utilities are often most concerned about capacity limits 

around physical grid elements, such as distribution feeders 

or substations. This paper’s analysis could be conducted 

using systems connected to these grid elements to better 

model volatility and deviation in a physical system. A 

region of sufficiently high PV penetration would need to be 

found in order to analyze the effect of increasing the number 

of systems with any statistical significance. 

Investigations in more geographic regions would strengthen 

the empirical evidence to understand if these metrics were 

truly independent of geography. The general trend supports 

this claim, but further analysis is required. 
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